Demonstration of N- and C-terminal domain intramolecular interactions in rat liver carnitine palmitoyltransferase 1 that determine its degree of malonyl-CoA sensitivity.

نویسندگان

  • Audrey Faye
  • Karen Borthwick
  • Catherine Esnous
  • Nigel T Price
  • Stéphanie Gobin
  • Vicky N Jackson
  • Victor A Zammit
  • Jean Girard
  • Carina Prip-Buus
چکیده

We have previously proposed that changes in malonyl-CoA sensitivity of rat L-CPT1 (liver carnitine palmitoyltransferase 1) might occur through modulation of interactions between its cytosolic N- and C-terminal domains. By using a cross-linking strategy based on the trypsin-resistant folded state of L-CPT1, we have now shown the existence of such N-C (N- and C-terminal domain) intramolecular interactions both in wild-type L-CPT1 expressed in Saccharomyces cerevisiae and in the native L-CPT1 in fed rat liver mitochondria. These N-C intramolecular interactions were found to be either totally (48-h starvation) or partially abolished (streptozotocin-induced diabetes) in mitochondria isolated from animals in which the enzyme displays decreased malonyl-CoA sensitivity. Moreover, increasing the outer membrane fluidity of fed rat liver mitochondria with benzyl alcohol in vitro, which induced malonyl-CoA desensitization, attenuated the N-C interactions. This indicates that the changes in malonyl-CoA sensitivity of L-CPT1 observed in mitochondria from starved and diabetic rats, previously shown to be associated with altered membrane composition in vivo, are partly due to the disruption of N-C interactions. Finally, we show that mutations in the regulatory regions of the N-terminal domain affect the ability of the N terminus to interact physically with the C-terminal domain, irrespective of whether they increased [S24A (Ser24-->Ala)/Q30A] or abrogated (E3A) malonyl-CoA sensitivity. Moreover, we have identified the region immediately N-terminal to transmembrane domain 1 (residues 40-47) as being involved in the chemical N-C cross-linking. These observations provide the first demonstration by a physico-chemical method that L-CPT1 adopts different conformational states that differ in their degree of proximity between the cytosolic N-terminal and the C-terminal domains, and that this determines its degree of malonyl-CoA sensitivity depending on the physiological state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pig liver carnitine palmitoyltransferase. Chimera studies show that both the N- and C-terminal regions of the enzyme are important for the unusual high malonyl-CoA sensitivity.

Pig and rat liver carnitine palmitoyltransferase I (L-CPTI) share common K(m) values for palmitoyl-CoA and carnitine. However, they differ widely in their sensitivity to malonyl-CoA inhibition. Thus, pig l-CPTI has an IC(50) for malonyl-CoA of 141 nm, while that of rat L-CPTI is 2 microm. Using chimeras between rat L-CPTI and pig L-CPTI, we show that the entire C-terminal region behaves as a si...

متن کامل

Roles of the N- and C-terminal domains of carnitine palmitoyltransferase I isoforms in malonyl-CoA sensitivity of the enzymes: insights from expression of chimaeric proteins and mutation of conserved histidine residues.

The mitochondrial outer membrane enzyme carnitine palmitoyltransferase I (CPT I) plays a major role in the regulation of fatty acid entry into the mitochondrial matrix for beta-oxidation by virtue of its inhibition by malonyl-CoA. Two isoforms of CPT I, the liver type (L) and muscle type (M), have been identified, the latter being 100 times more sensitive to malonyl-CoA and having a much higher...

متن کامل

Structure-function relationships of the liver and muscle isoforms of carnitine palmitoyltransferase I.

Elucidation of the membrane topology of carnitine palmitoyltransferase (CPT) I showed that the extreme N-terminus is involved in determining the sensitivity of the liver (L) isoform to malonyl-CoA and suggested that interaction between the two cytosolic segments of the CPT I molecule determines the kinetic characteristics of the enzyme. Work with chimaeric liver/muscle-isoform (L/M) proteins co...

متن کامل

Use of six chimeric proteins to investigate the role of intramolecular interactions in determining the kinetics of carnitine palmitoyltransferase I isoforms.

The two isoforms of carnitine palmitoyltransferase I (CPT I; muscle (M)- and liver (L)-type) of the mitochondrial outer membrane have distinct kinetic characteristics with respect to their affinity for one of the substrates (l-carnitine) and the inhibitor malonyl-CoA. Moreover, they differ markedly in their hysteretic behavior with respect to malonyl-CoA and in their response to changes in the ...

متن کامل

Identification by mutagenesis of conserved arginine and glutamate residues in the C-terminal domain of rat liver carnitine palmitoyltransferase I that are important for catalytic activity and malonyl-CoA sensitivity.

Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the conserved glutamate residue, Glu-603, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, histidine, glutamine, and aspartate. Substitution of Glu-603 with alanine or histidine resulted i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 387 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005